Hanna Astephan, Solly Parenti, Joe Varilone, Nick Wasylyshyn and Ben Zinberg*

 (bzinberg@mit.edu), 3 Ames St. \#M508, Cambridge, MA 02142, and Michael Zieve. Common Values of Polynomials Over Finite Fields. Preliminary report.Let K be the finite field of q elements, K_{i} its degree- i extension, and f and g polynomials in $K[x]$ of degree at most n. We provide several results and examples about the possibilities for N, where N is the cardinality of the intersection of the image sets $f(K)$ and $g(K)$. For instance, there are positive constants a_{n} and b_{n}, which depend only on n, such that either $N<2 n$ or $N>a_{n} q-b_{n} s q r t q$. Moreover, if $f(K)=g(K)$ and q is larger than some explicit function of n, then there are infinitely many i for which $f\left(K_{i}\right)=g\left(K_{i}\right)$. If additionally f and g have prime degree, then there are very few possibilities for the monodromy group of f (which equals the monodromy group of g, except when f and g come from a known list of polynomials). By combining calculations inside the possible monodromy groups with factorization arguments, we obtain a partial classification of all such polynomials f and g. On the other hand, there are rational functions $f, g \in K(x)$ such that $f\left(K_{i}\right)$ equals $g\left(K_{i}\right)$ for even i, but $f\left(K_{i}\right)$ and $g\left(K_{i}\right)$ are disjoint for odd i. Our results depend on various ingredients, including deep group-theoretic results and a new function field analogue of the Frobenius Density Theorem. (Received September 25, 2012)

