1086-11-2656

Hanna Astephan, Solly Parenti, Joe Varilone, Nick Wasylyshyn and Ben Zinberg* (bzinberg@mit.edu), 3 Ames St. #M508, Cambridge, MA 02142, and Michael Zieve. Common Values of Polynomials Over Finite Fields. Preliminary report.

Let K be the finite field of q elements, K_i its degree-*i* extension, and f and g polynomials in K[x] of degree at most n. We provide several results and examples about the possibilities for N, where N is the cardinality of the intersection of the image sets f(K) and g(K). For instance, there are positive constants a_n and b_n , which depend only on n, such that either N < 2n or $N > a_nq - b_nsqrtq$. Moreover, if f(K) = g(K) and q is larger than some explicit function of n, then there are infinitely many *i* for which $f(K_i) = g(K_i)$. If additionally f and g have prime degree, then there are very few possibilities for the monodromy group of f (which equals the monodromy group of g, except when f and g come from a known list of polynomials). By combining calculations inside the possible monodromy groups with factorization arguments, we obtain a partial classification of all such polynomials f and g. On the other hand, there are rational functions $f, g \in K(x)$ such that $f(K_i)$ equals $g(K_i)$ for even i, but $f(K_i)$ and $g(K_i)$ are disjoint for odd i. Our results depend on various ingredients, including deep group-theoretic results and a new function field analogue of the Frobenius Density Theorem. (Received September 25, 2012)