1086-11-2892 Reyes Matiel Ortiz-Albino* (reyes.ortiz@upr.edu), 1011 Sonsire Chalets, Mayaguez, PR 00682. τ_{n}-Number Theory. Preliminary report.

The study of a general theory of factorizations leads to the definition of a τ_{n}-factorization or τ_{n}-product, given by Anderson an Frazier, in 2006. They defined the concepts of τ_{n}-irreducible elements, τ_{n}-prime elements, and some properties of $\tau_{n}{ }^{-}$ factorizations. Later in 2007, Hamon characterized the τ_{n}-atomicity of \mathbb{Z}, which only holds for $n=0,1,2,3,4,5,6,8$, 10 and 12. In 2008, Ortiz defined the greatest common τ_{n}-divisor, unfortunately it does not always exists for an integer $n>1$. Nowadays, Ortiz has developed formulas to calculate a new type of ordered greatest common τ_{n}-divisor and some arithmetic τ_{p}-functions, where p is a positive prime integer. Even though the τ_{n}-gcd does not always exist, the ordered τ_{n}-gcd is conjecture to always exist for any natural number n. (Received September 26, 2012)

