A perfect number is a natural number N such that the sum of its positive divisors (including N) of N equals 2 N , denoted by sigma $(\mathrm{N})={ }^{2} \mathrm{~N}$. From the work of Euclid and Euler, it is known that an even natural number N is perfect if and only if there is a natural number p such that $\left(2^{p}-1\right)$ is a prime and $\mathrm{N}=\left(2^{p}-1\right) 2^{(p-1)}$. Today, there are about 47 known even perfect numbers. Euler proved that for an odd perfect number N, there is a prime $p=1(\bmod 4)$ such that $N=\left(p^{m}\right)\left(q^{2}\right)$ with $\mathrm{m}=1(\bmod 4)$ and $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1$. However, it is an unsolved problem in number theory whether there are any odd perfect numbers. In 1991, Brent, Cohen, and te Riele proved that odd perfect numbers are greater than 10^{300}. In 2012, Ochem and Rao modified their method to show that odd perfect numbers are greater than 10^{1500}. Some recent results on odd perfect numbers will be discussed in this presentation. (Received September 26, 2012)

