1086-11-641 David J. Grynkiewicz* (diambri@hotmail.com), Institut für Mathematik, Heinrichstrasse 36, 8010 Graz, Austria, and Alfred Geroldinger. The Large Davenport Constant for Non-Abelian Groups.
By a sequence over a group G, we mean a finite sequence of terms from G which is unordered, and we say that it is product-one if its terms can be ordered so that their product is the identity. The product-one sequences form a monoid called the Block monoid of G. The small Davenport constant $\mathrm{d}(G)$ is the maximal integer ℓ such that there is a sequence over G of length ℓ which has no nontrivial, product-one subsequence. The large Davenport constant $\mathrm{D}(G)$ is the maximal length of a minimal product-one sequence - this is the maximal length of an atom in the Block monoid over G, i.e., the maximal length of a product-one sequence which cannot be factored into two nontrivial, product-one subsequences. It is easily observed that $\mathrm{d}(G)+1 \leq \mathrm{D}(G)$, and if G is abelian, then equality holds and the constant $\mathrm{D}(G)$ is also known to be equal to the Noether constant $\beta(G)$ from Invariant Theory. However, for non-abelian groups, these constants can all differ significantly.

The goal of this talk is present various upper bounds for $\mathrm{D}(G)$ in the non-abelian setting. In the case when G possesses a cyclic, index 2 subgroup, we will present an exact value. (Received September 10, 2012)

