A fundamental question in the study of integral quadratic forms is the representation problem which asks for an effective determination of the set of integers represented by a given quadratic form. A related and equally interesting problem is the representation of integers by inhomogeneous quadratic polynomials. An inhomogeneous quadratic polynomial is a sum of a quadratic form and a linear form; it is called almost universal if it represents all but finitely many positive integers. This talk gives a characterization of almost universal ternary inhomogeneous quadratic polynomials, given by

$$
H(x)=\frac{1}{p^{\alpha}}[2 B(\nu, x)+Q(x)],
$$

where p is prime, $\alpha>0, Q$ is the quadratic map associated to a positive definite quadratic lattice N, and ν is a vector not in N. Imposing some mild arithmetic conditions, we will rely on the theory of quadratic lattices and primitive spinor exceptions to give a list of global conditions on ν and N, under which $H(x)$ is almost universal. In particular, we will present some examples of almost universal quadratic polynomials, given by mixed sums of squares and polygonal numbers. (Received September 10, 2012)

