1086-13-1971 Alina A Florescu* (alina-florescu@uiowa.edu). Reduced τ_{n}-factorizations of the Integers. Preliminary report.
Given a natural number n, a reduced τ_{n}-factorization of an integer a is a factorization of the type

$$
a=a_{1} a_{2} \ldots a_{k}
$$

where $a_{1} \equiv a_{2} \equiv \ldots \equiv a_{k} \bmod n$ and $a_{i} \neq \pm 1$ for all $1 \leq i \leq k$. With these generalized factorizations new irreducible elements emerge. For example, for $n \geq 2,6=2 \cdot 3$ has no nontrivial reduced τ_{n}-factorizations. The analogue of the Fundamental Theorem of Arithmetic, that any positive integer has a unique reduced τ_{n}-factorization into these new irreducibles, fails in the existence part for most n. For the remaining n, the uniqueness of the factorization is not guaranteed. (Received September 24, 2012)

