1086-13-2210 Ben Richert* (brichert@calpoly.edu), Mathematics Department, Cal Poly, San Luis Obispo, CA 93407. Partitionable Simplicial Complexes. Preliminary report.

A simplicial complex Δ is said to be partitionable if there exists a partition $\Delta = \bigcup_{i=1}^{r} [F_i, G_i]$ where the G_i are the facets of Δ and $[F_i, G_i] = \{F \in \Delta \mid F_i \subseteq F \subseteq G_i\}$. Stanley has conjectured that if Δ is Cohen-Macaulay then Δ is partitionable. We assume this conjecture and explore some of the implications.

If Δ is a pure simplicial complex of dimension n on v vertices, we define $C_{(n-1)}(\Delta)$ to be the simplicial complex on one more vertex v + 1 such that $\{i_1, \ldots, i_k\} \in C_{(n-1)}(\Delta)$ if and only if either $\{i_1, \ldots, i_k\} \in \Delta$ or $i_k = v + 1$, $\{i_1, \ldots, i_{k-1}\} \in \Delta$ and $k - 1 \leq n - 1$. Let $C_{n-1}^t(\Delta)$ be the *t*-fold application of this procedure. Then we prove that $\min\{t \mid C_{n-1}^t(\Delta) \text{ is partitionable}\} = \dim(k[\Delta]) - \operatorname{depth}(k[\Delta])$ where $k[\Delta]$ is the Stanley-Reisner ring of Δ . (Received September 25, 2012)