1086-13-2210 Ben Richert* (brichert@calpoly.edu), Mathematics Department, Cal Poly, San Luis Obispo, CA 93407. Partitionable Simplicial Complexes. Preliminary report.
A simplicial complex Δ is said to be partitionable if there exists a partition $\Delta=\cup_{i=1}^{r}\left[F_{i}, G_{i}\right]$ where the G_{i} are the facets of Δ and $\left[F_{i}, G_{i}\right]=\left\{F \in \Delta \mid F_{i} \subseteq F \subseteq G_{i}\right\}$. Stanley has conjectured that if Δ is Cohen-Macaulay then Δ is partitionable. We assume this conjecture and explore some of the implications.

If Δ is a pure simplicial complex of dimension n on v vertices, we define $C_{(n-1)}(\Delta)$ to be the simplicial complex on one more vertex $v+1$ such that $\left\{i_{1}, \ldots, i_{k}\right\} \in C_{(n-1)}(\Delta)$ if and only if either $\left\{i_{1}, \ldots, i_{k}\right\} \in \Delta$ or $i_{k}=v+1$, $\left\{i_{1}, \ldots, i_{k-1}\right\} \in \Delta$ and $k-1 \leq n-1$. Let $C_{n-1}^{t}(\Delta)$ be the t-fold application of this procedure. Then we prove that $\min \left\{t \mid C_{n-1}^{t}(\Delta)\right.$ is paritionable $\}=\operatorname{dim}(k[\Delta])-\operatorname{depth}(k[\Delta])$ where $k[\Delta]$ is the Stanley-Reisner ring of Δ. (Received September 25, 2012)

