1086-28-930

Jonas Azzam^{*} (jazzam@math.washington.edu), University of Washington, Department of Mathematics, C-138 Padelford, Seattle, WA 98195-4350. *Wasserstein Distance and Rectifiability of Doubling Measures.*

In a recent paper, Tolsa has characterized *d*-regular uniformly rectifiable measures in Euclidean space using Wasserstein distances. For a *d*-regular measure μ , he defines a quantity $\alpha(x, r)$ which, roughly speaking, measures the Wasserstein distance between μ inside the ball B(x, r) and planar *d*-dimensional measure and proves that uniform rectifiability of μ is equivalent to $\alpha(x, r)^2 \frac{d\mu(x)dr}{r}$ being a Carleson measure. In this talk, we explore what conditions on $\alpha(x, r)$ are necessary to guarantee different grades of rectifiability for μ if we only assume μ is a doubling measure. We also establish rectifiability using more intrinsic quantities similar to $\alpha(x, r)$ involving the Wasserstein distance which estimate the doubling behavior of μ . (Received September 16, 2012)