1086-35-1740 **Tao Huang***, Department of Mathematics, Lexington, KY 40506, and **Changyou Wang**. Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals.

We establish an ϵ -regularity criterion for any weak solution (u, d) to the nematic liquid crystal flow such that $(u, \nabla d) \in L_t^p L_x^q$ for some $p \ge 2$ and $q \ge n$ satisfying the condition $\frac{n}{q} + \frac{2}{p} = 1$. As consequences, we prove the interior smoothness of any such a solution when p > 2 and q > n. We also show that uniqueness holds for the class of weak solutions (u, d) the Cauchy problem of the nematic liquid crystal flow that satisfy $(u, \nabla d) \in L_t^p L_x^q$ for some p > 2 and q > n satisfying $\frac{n}{q} + \frac{2}{p} = 1$. (Received September 24, 2012)