1086-35-2398 Murat Akman* (makman@ms.uky.edu), Department of Mathematics, University of Kentucky, Lexington, KY 40508, and John L. Lewis, Department of Mathematics, University of Kentucky, Lexington, KY 40508. On the Dimension of a Certain Measure Arising From a PDE. Preliminary report.

In this paper we study the Hausdorff dimension of a measure μ related to a positive weak solution, u, of a certain partial differential equation in $\Omega \cap N$ where $\Omega \subset \mathbb{C}$ is bounded simply connected domain and N is neighborhood of $\partial\Omega$, u has continuous boundary value 0 on $\partial\Omega$ and is a weak solution to

$$\sum_{i,j=1}^{2} \frac{\partial}{\partial x_{i}} (f_{\eta_{i}\eta_{j}}(\nabla u(z)) \, u_{x_{j}}(z)) = 0 \text{ in } \Omega \cap N.$$

Also $f(\eta), \eta \in \mathbb{C}$ is homogeneous of degree p and ∇f is δ -monotone on \mathbb{C} for some $\delta > 0$. Put $u \equiv 0$ in $N \setminus \Omega$. Then μ is the unique positive finite Borel measure μ with support in $\partial\Omega$ satisfying

$$\int_{\mathbb{C}} \langle \nabla f(\nabla u(z)), \nabla \phi(z) \rangle dA = - \int_{\partial \Omega} \phi(z) d\mu$$

for every $\phi \in C_0^{\infty}(N)$.

Our work generalizes work of Lewis and coauthors when the above PDE is the p Laplacian (i.e, $f(\eta) = |\eta|^p$) and also for p = 2, the well known theorem of Makarov regarding the Hausdorff dimension of harmonic measure relative to a point in Ω . (Received September 26, 2012)