1086-39-1961 William T Jamieson* (bill@math.uri.edu), 5 Lippitt Road, Department of Mathematics, Kingston, RI 02881, and Orlando Merino (merino@math.uri.edu), 5 Lippitt Road, Department of Mathematics, Kingston, RI 02881. On the asymptotic behavior of convergent solutions to difference equations.

The asymptotic behavior of convergent solutions to difference equations $x_{n+1} = T(x_n)$ for $n \ge 0$, where T is two times continuously differentiable map on an open subset of \mathbb{R}^n or \mathbb{C}^n is considered.

It can be shown from results by C. V. Coffman that if \bar{x} and J denote respectively the limit of a convergent solution $\{x_n\}$ and the jacobian of T at \bar{x} , then there exist $y \in \mathbb{R}^n$ or \mathbb{C}^n and a positive number ρ such that ρ is equal to the modulus of one the characteristic roots of J, $||x_n||^{1/n} = \rho + o(\rho^n)$, and $x_n = \bar{x} + J^n y + E_n$, where $E_n = o(n^k \rho^n)$.

We give sharp asymptotic estimates for E_n in the case when J is diagonalizable. (Received September 24, 2012)