1086-47-1609 **Raul E. Curto*** (raul-curto@uiowa.edu), Department of Mathematics, University of Iowa, Iowa City, IA 52242. *Multiplication operators on reproducing kernel Hilbert spaces on Reinhardt domains in* \mathbb{C}^2 .

Consider a reproducing kernel Hilbert space H(K) on a bounded Reinhardt domain $\Omega \subset \mathbb{C}^2$, with kernel of the form $K(\mathbf{z}, \mathbf{w}) = \sum_{\mathbf{m} \in \mathbb{Z}^2_+} \frac{\mathbf{z}^{\mathbf{m}} \mathbf{w}^{\mathbf{m}}}{A_{\mathbf{m}}}$. Assume that the coordinate functions z_1 and z_2 are multipliers on H(K). Assume further that $A_{m_1+1,m_2+1} = A_{1,1}\gamma_{m_1+m_2}[\alpha]$, where α is a bounded sequence of positive numbers and $\{\gamma_k\}_{k\geq 0}$ is the associated sequence of moments; that is, $\gamma_0[\alpha] := 1$, $\gamma_{k+1}[\alpha] := \alpha_k^2 \gamma_k[\alpha]$ $(k \geq 0)$.

The pair $M_{\mathbf{z}} \equiv (M_{z_1}, M_{z_2})$ is thus a 2-variable weighted shift whose restriction to the invariant subspace $z_1 z_2 H(K)$ can be regarded as a 2-variable embedding of the unilateral weighted shift W_{α} . In joint work with S.H. Lee and J. Yoon, we study (joint) spectral and structural properties of $M_{\mathbf{z}}$ acting on H(K). For instance, we prove that $M_{\mathbf{z}}$ is subnormal if and only if some integer power $M_{z_1}^{k_1} M_{z_2}^{k_2}$ is subnormal. (Received September 23, 2012)