1086-47-529 Lawrence A. Fialkow* (fialkowl@newpaltz.edu). Limits of positive flat bivariate moment matrices.

Let $\overline{\mathcal{F}_d}$ denote the closure of the positive flat moment matrices of degree 2d in n real variables. Each matrix in $\overline{\mathcal{F}_d}$ admits computable approximate representing measures, and in previous work Jiawang Nie and the author began to study concrete conditions for membership in this class. Let $\beta \equiv \beta^{(2d)} = \{\beta_i\}_{i \in \mathbb{Z}_+^n, |i| \leq 2d}, \beta_0 > 0$, denote an n-dimensional real sequence of degree 2d. If the corresponding moment matrix $M_d \equiv M_d(\beta)$ is the limit of a sequence of positive flat moment matrices $\{M_d^{(k)}\}$, i.e., $M_d^{(k)} \succeq 0$ and rank $M_d^{(k)} = \operatorname{rank} M_{d-1}^{(k)}$, then i) $M_d \succeq 0$, ii) rank $M_d \leq \dim \mathbb{R}[x_1, \ldots, x_n]_{d-1}$, and iii) $\beta^{(2d-1)}$ admits a representing measure. We extend the results of Nie and the author by proving, conversely, that for n = 2, if M_d satisfies i), ii), and a Hankel matrix condition related to iii), then M_d is the limit of positive flat moment matrices. (Received September 05, 2012)