1086-54-654 Gangadhar R Hiremath* (gangadhar.hiremath@uncp.edu), Dept of Math and Comp Sci, PO Box 1510, One University Drive, UNCP, Pembroke, NC 28372. Countable Paracompactness, Invariance under Clopen Mappings, and Metrization. Preliminary report.

A topological space X is said to have a topological property (*) if and only if each countable closed discrete subset $A = \{x_n | n \text{ is a natural number}\}$ of X admits a countable locally finite open collection $\{G_n | n \text{ is a natural number}\}$ such that for each $n, G_n \cap A = \{x_n\}$. Every countably paracompact space satisfies (*). This article contains the following results:

1. A topological space X is regular if the space is either a Hausdorff first countable space with (*) or a countably paracompact space in which points are regular G_{δ} .

2. A second countable space is metrizable if and only if the space is a Hausdorff space with (*) (and hence, the space is a Hausdorff countably paracompact space).

- 3. A T_1 completely regular space is countably compact if and only if the space is a pseudocompact space with (*).
- 4. The following spaces are invariant under clopen (= continuous closed and open) mappings:
 - (i) Countably paracompact Moore spaces
 - (ii) Hausdorff countably paracompact developable spaces
 - (iii) T_1 countably paracompact developable spaces
 - (iv) T_1 second countable spaces satisfying (*)
 - (v) Hausdorff isocompact wM spaces (Received September 10, 2012)