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Ian Agol recently gave an approach for improving the sharpness of Buser’s inequality for compact n-manifolds M , which

gives an upper bound for the Cheeger constant of M , h(M), in terms of the first non-zero eigenvalue of the Laplacian

of M , λ1(M). A difficulty of Agol’s method is that it is given implicitly by a collection of equations, one of which is an

ODE. Agol’s equations are simplest for n = 3, and he used his approach to substantially improve Buser’s inequality in

that dimension. In recent work, I find the general solution to Agol’s ODE for arbitrary n. I will then discuss how Agol’s

refinement of Buser’s inequality can be extended from compact surfaces to any hyperbolic surface with finite area. Selberg’s

one-quarter conjecture considers a specific sequence of arithmetic surfaces X(N) and speculates that λ1(X(N)) ≤ 1/4.

As an application, using a result of Brooks and Zuk, we show that Selberg’s conjecture one quarter conjecture implies

that h(X(N)) is bounded in a fixed interval of length less than 1/5 for all but finitely many N . (Received September 16,

2012)
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