1086-VB-2394 Dragan Jankovic* (draganj@cameron.edu), Cameron University, Department of Mathematical Sciences, 2800 W Gore Blvd., Lawton, OK 73505. New Curves from Old via
Tangents. Preliminary report.
Let $f(x)$ and $g(x)$ be smooth real functions on an interval (a, b) with $g^{\prime}(x) \neq 0$. It is a simple exercise to show that the tangent lines to the curves in the family $f(x)+k g(x)$ (k is a real number) at $x=t$ are concurrent and that the point of intersection lies on the curve $x=x-\frac{g(t)}{g^{\prime}(t)}, y=f(t)-\frac{f^{\prime}(t) g(t)}{g^{\prime}(t)}$, where t varies in (a, b). Some well known curves are produced by this construction. For instance, $g(x)=x-\frac{1}{x},(0<x<1)$, and $f(x)=-\ln (x)$ generate the tractrix, while $g(x)=\tan \left(\frac{x}{2}\right)(0<x<\pi)$ and $f(x)=-x \tan \left(\frac{x}{2}\right)$ generate the cycloid. (Received September 25, 2012)

