1086-VM-2706 **Timothy C Melvin*** (tmelvin@math.wsu.edu), 1601 N Benton Ave, Carroll College, Math Dept, Helena, MT 59625. Spectrally Arbitrary Zero-Nonzero Patterns and the Nilpotent Jacobian Method.

A zero-nonzero pattern \mathcal{A} is a matrix whose entries are from the set $\{*, 0\}$. We say that an $n \times n$ zero-nonzero pattern is a spectrally arbitrary pattern (SAP) over the field \mathbb{F} if for every monic polynomial p(x) with coefficients from \mathbb{F} of degree n, there exists a matrix \mathcal{A} over \mathbb{F} with zero-nonzero pattern \mathcal{A} such that the characteristic polynomial of \mathcal{A} is p(x). The Nilpotent-Jacobian Method is a powerful tool used to determine if a pattern \mathcal{A} is a SAP, when the field \mathbb{F} is \mathbb{R} . We will explore what (if any) information can be gleaned from this method when we look at a pattern over other fields, including finite fields, \mathbb{Q} , $\overline{\mathbb{Q}}$ (the algebraic closure of \mathbb{Q}), and \mathbb{C} . (Received September 25, 2012)