1086-VN-1078 Ralph P. Grimaldi* (grimaldi@rose-hulman.edu), Professor Ralph P. Grimaldi, Mathematics Dept. RHIT, 5500 Wabash Avenue, Terre Haute, IN 47803. Up-Down Sequences: Inversions, Coinversions, and the Sum of the Major Indices.
For $n \geq 1$, let a_{n} count the number of up-down sequences $s_{1}, s_{2}, \ldots, s_{n}$, where (i) $s_{1}=1$; (ii) $s_{i} \in\{1,2,3,4\}$, for $2 \leq i \leq n$; and, (iii) $\left|s_{i}-s_{i-1}\right|=1$, for $2 \leq i \leq n$.

One finds that $a_{n}=F_{n}$, the n-th Fibonacci number.
If $s_{1}, s_{2}, \ldots, s_{n}$ is a given up-down sequence, we say that (1) an inversion occurs whenever there are integers i, j where $1 \leq i<j \leq n$ but $s_{i}>s_{j}$; and, (2) a coinversion occurs whenever there are integers i, j where $1 \leq i<j \leq n$ and $s_{i}<s_{j}$.

We determine formulas for the numbers of inversions and coinversions that occur among these F_{n} sequences.
Finally, for an up-down sequence s of length n, we say that a descent occurs at position i, for $1 \leq i \leq n-1$, if $s_{i}>s_{i+1}$, and we let $\operatorname{Des}(s)$ be the set of all such positions. The major index of s is then the sum of all the entries in $\operatorname{Des}(s)$. Our final result is a formula for the sum of the major indices for all F_{n} up-down sequences of length n. (Received September 18, 2012)

