1086-VN-1131 Diana L Smith* (diana@math.uri.edu). Defective (3,0,0)-colorings of planar graphs with no 4or 5-cycles.
Steinberg's conjecture that every planar graph without 4- or 5 -cycles is 3 -colorable is still open, although much work has been done leading up to a solution. This problem was relaxed by Raspaud, Chang, Havet, and Montassier (2012) by considering near-colorings of these graphs. A graph is said to be (s_{1}, s_{2}, s_{3})-colorable if its vertex set can be colored by three colors $(1,2,3)$ such that the subgraph induced by the $i^{\text {th }}$ color class has degree at most s_{i} for $i=1,2,3$. Raspaud et al. proved every planar graph without 4 - or 5 -cycles is $(2,1,0)$-colorable as well as $(4,0,0)$-colorable. We prove in this paper that every such graph is in fact (3,0,0)-colorable. (Received September 19, 2012)

