1086-VN-1750 Casey Mann* (cmann@uttyler.edu), The University of Texas at Tyler, Department of Mathematics, 3900 University Blvd, Tyler, TX 75799, and Ali Chick. Equilaterally k-Isotoxal Tiles. Preliminary report.
A tiling \mathcal{T} of the plane is k-isotoxal if every edge of \mathcal{T} can be mapped to any other edge of \mathcal{T} by a symmetry of \mathcal{T}. We define a tile T to be k-isotoxal if every tiling admitted by T is k-isotoxal. Trivially, any tile that has k congruence classes of edges is n-isotoxal for $n \geq k$. Therefore, we restrict attention to equilateral tiles (i.e. tiles whose edges are all congruent to one another). Lastly, an equilaterally k-isotoxal tile is one that is equilateral and admits only k-isotoxal tilings of the plane. In this talk we present examples if equilaterally k-isotoxal tiles for $k=1,2$, and 3. (Received September 24, 2012)

