1086-VN-2184 John Portin* (jportin@linfield.edu), Alexander Sistko, Luke Naftz, Tyler Hays, Nino Barrett, Susan Rufai, Jennifer Firkins-Nordstrom and Chuck Dunn. The 1-relaxed game chromatic number of complete multipartite semi-Hamiltonian graphs.
For a finite graph G, a non-negative integer d and a positive integer k, we define a game on G played by two players, Alice and Bob, who alternately colors the uncolored vertices of G. In the d-relaxed game a color α is legal for the vertex v if after v is colored alpha, the subgraph induced by all of the α colored vertices has maximum degree at most d. Alice wins the game if every vertex in G can eventually be colored. Otherwise, bob wins. The least k such that Alice has a winning strategy is called the d-relaxed game chromatic number. The 0 -relaxed game chromatic number of complete multipartite graphs is known, and the 1-relaxed game chromatic number of complete multipartite graph is known for special graphs. We will show the 1-relaxed game chromatic number of complete multipartite semi-Hamiltonian graphs is $\lceil|G| / 2\rceil$ where $|G|$ is the size of the vertex set of G, and give criteria for determining whether a complete multipartite graph is semi-Hamiltonian. (Received September 25, 2012)

