1086-VN-2768 A. Scott Duane* (adrian.duane@gmail.com) and Jeff Remmel. Counting consecutive patterns in up-down permutations using the maximum packing number.
Let $A_{2 n}$ denote the set of up-down alternating permutations of length $2 n$. For a sequence of distinct integers $\sigma_{1}, \ldots, \sigma_{2 n}$, we define $\operatorname{red}(\sigma)$ to be the sequence that results from replacing the i th smallest integer in σ by i. We say that an alternating permutation π has a τ-match at position i if $\operatorname{red}\left(\pi_{i}, \ldots, \pi_{i+2 j-1}\right)=\tau$, where $|\tau|=2 j$. We define τ-mch (σ) to be the number of τ-matches in an alternating permutation σ. Furthermore, we say that τ has the minimal overlapping property if two τ-matches in an alternating permutation π can share at most two letters.

Let τ be an up-down alternating permutation with the minimal overlapping property. We derive the generating function

$$
\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in A_{2 n}} x^{\tau-m c h(\sigma)}=\frac{1}{1+\sum_{n \geq 1} \frac{t^{2 n}}{(2 n)!} G M P_{\tau, 2 n}(x)}
$$

where $G M P_{\tau, 2 n}(x)$ is the generalized maximum packing polynomial. We define this polynomial and give examples of patterns τ for which $G M P_{\tau, 2 n}(x)$, and, by extension, the generating function above, can be calculated. (Received September 25, 2012)

