1086-VN-2902 William B Jamieson* (jamieson@goldmail.etsu.edu), Jessie Deering, Teresa Haynes and Stephen Hedetniemi. Uphill Domination in Graphs.
A path $\pi=v_{1}, v_{2}, \ldots v_{k+1}$ in a graph $G=(V, E)$ is a downhill path if for every $i, 1 \leq i \leq k, \operatorname{deg}\left(v_{i}\right) \geq \operatorname{deg}\left(v_{i+1}\right)$, where $\operatorname{deg}\left(v_{i}\right)$ denotes the degree of vertex $v_{i} \in V$, and an uphill path if for every $i, 1 \leq i \leq k, \operatorname{deg}\left(v_{i}\right) \leq \operatorname{deg}\left(v_{i+1}\right)$. The downhill domination number $\gamma_{d}(G)$ equals the minimum cardinality of a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a downhill path originating from some vertex in S, and the uphill domination number $\gamma_{u}(G)$ equals the minimum cardinality of a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a uphill path originating from some vertex in S. We investigate uphill domination numbers in graphs and compare results to those of downhill domination numbers in graphs. (Received September 26, 2012)

