1086-VN-2902 William B Jamieson* (jamieson@goldmail.etsu.edu), Jessie Deering, Teresa Haynes and Stephen Hedetniemi. Uphill Domination in Graphs.

A path $\pi = v_1, v_2, \ldots v_{k+1}$ in a graph G = (V, E) is a downhill path if for every $i, 1 \leq i \leq k, \deg(v_i) \geq \deg(v_{i+1})$, where $\deg(v_i)$ denotes the degree of vertex $v_i \in V$, and an uphill path if for every $i, 1 \leq i \leq k, \deg(v_i) \leq \deg(v_{i+1})$. The downhill domination number $\gamma_d(G)$ equals the minimum cardinality of a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a downhill path originating from some vertex in S, and the uphill domination number $\gamma_u(G)$ equals the minimum cardinality of a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a uphill path originating from some vertex in S, and the uphill domination number $\gamma_u(G)$ equals the minimum cardinality of a set $S \subseteq V$ having the property that every vertex $v \in V$ lies on a uphill path originating from some vertex in S. We investigate uphill domination numbers in graphs and compare results to those of downhill domination numbers in graphs. (Received September 26, 2012)