1086-VN-721 Brian G Kronenthal* (kronenth@math.udel.edu), University of Delaware, Department of Mathematical Sciences, Ewing Hall 501, Newark, DE 19716. On Algebraically Defined Graphs and Generalized Quadrangles.
Let q be an integer. Consider the problem of constructing a girth eight $(q+1)$-regular bipartite graph containing the minimum possible number of vertices. For a given odd prime power q, there is only one known solution: the incidence graph of a generalized quadrangle. This graph contains a special induced subgraph denoted $\Gamma_{3}(q)$, which is called a monomial graph due to the monomials that determine its structure. Indeed, $\Gamma_{3}(q)$ is a bipartite graph with partite sets $P=\mathbb{F}_{q}^{3}=L$. Vertices $\left(a_{1}, a_{2}, a_{3}\right) \in P$ and $\left[x_{1}, x_{2}, x_{3}\right] \in L$ are adjacent if and only if $a_{2}+x_{2}=a_{1} x_{1}$ and $a_{3}+x_{3}=a_{1} x_{1}^{2}$. In this talk, we will address the viability of using other algebraically defined graphs to construct additional generalized quadrangles over finite fields of odd order. In addition, we will discuss a related problem over the complex numbers. (Received September 11, 2012)

