1086-VO-1591 Bao Qi Feng* (bfeng@kent.edu), The Department of Mathematical Sciences, Kent State University at Tuscarawas, New Philadelphia, OH 44663. There is an infinite number of twin primes: An application of set theory. Preliminary report.
In this article, we construct a basic set of I_{0} :

$$
I_{0}=\{(\alpha, \alpha+2): \alpha \in N\}
$$

a set of all pairs of two integers, in which the first coordinate belongs to the natural number set N, and the second coordinator is adding 2 to the first coordinator always. Then, classifying all elements of I_{0} by the least prime factor criterion to get an infinite number of nonempty subsets $I_{k}, k \geq 1$, in I_{0}. Let $t_{k}=\min I_{k}, k \geq 1$. Thus, the process of proving the Conjecture of Twin Primes consists of the following four statements:
$1 . I_{k-1} \supset I_{k}, k \geq 1$. It implies the sequence of numbers $\left\{t_{k}\right\}$ is an non-decreasing;
2. Under the condition of $I_{k}\left\{p_{k+1}^{2}-3\right\} \neq \phi, t_{k}$ is a pair twin primes, for all $k \geq 1$;
3.The sequence of numbers $\left\{t_{k}\right\}$ has a strict increasing infinite subsequence;
4. $I_{k}\left\{p_{k+1}^{2}-3\right\} \neq \phi$, for all $k \geq 1$.
(Received September 23, 2012)

