1086-VO-1623 James Lanterman* (jay.lanterman@gmail.com) and Jeremiah Reinkoester. Irreducible integers under the congruence modulo n relation.

Building on the general theory of factorization posited by Anderson and Frazier in 2011, for an element a of an integral domain D under an equivalence relation τ , the factorization of a is defined as $\lambda a_1 a_2 a_3 \dots a_k$, where λ is a unit in D and $a_i \tau a_j$ for all i, j. An irreducible element has no proper factorization; that is, a factorization in which there is more than one distinct non-unit factor. In this paper, the irreducible integers under the congruence modulo n relation are found for some values of n, and these findings are generalized in the first step toward a general characterization of the irreducible integers under this relation for any prime n. (Received September 23, 2012)