1086-VO-1623 James Lanterman* (jay.lanterman@gmail.com) and Jeremiah Reinkoester. Irreducible integers under the congruence modulo n relation.
Building on the general theory of factorization posited by Anderson and Frazier in 2011, for an element a of an integral domain D under an equivalence relation τ, the factorization of a is defined as $\lambda a_{1} a_{2} a_{3} \ldots a_{k}$, where λ is a unit in D and $a_{i} \tau a_{j}$ for all i, j. An irreducible element has no proper factorization; that is, a factorization in which there is more than one distinct non-unit factor. In this paper, the irreducible integers under the congruence modulo n relation are found for some values of n, and these findings are generalized in the first step toward a general characterization of the irreducible integers under this relation for any prime n. (Received September 23, 2012)

