Miguel Antonio Jiménez-Pozo* (mapozo@ujaen.es), Puebla, Mexico, and Geraldo Soares de Souza (desougs@auburn.edu), Auburn University, Auburn, AL 36849-5310. Immersions of Lp spaces to Lipschitz subspaces of continuous functions and duality theorems.

Let $(\Omega, \mathbb{A}, \mu)$ be a positive finite measure space and X the metric subset of $L^1(\mu)$ of all characteristic functions of measurable sets 1_A . By identifying any pair of measurable sets A, B, whenever $\mu(A\Delta B) = 0$, one has

$$\forall 1_A, 1_B \in \mathbb{X}, \int |1_A - 1_B| d\mu = \mu(A\Delta B) = d(A, B)$$

The real Banach space $L^{1}(\mu)$ is embedded into a subspace C_{μ} of C(X) determined by the operator

$$\forall g \in L^1(\mu) \, \forall A \in \mathbb{A}, \Lambda(g, A) = \int_A g d\mu$$

Since $\|\Lambda\| = 1$ and $\|\Lambda^{-1}\| \le 2$, $L^1(\mu)$ and C_{μ} are isomorphic and C_{μ} is closed in C(X). In this talk we study spaces with Hölder norm with functions in C_{μ} that satisfy some Lipschitz conditions as well as duality theorems. This is related to Lp, Lorentz and De Souza spaces and others. (Received February 14, 2008)