John Georges, David Mauro and Yan Wang*, Box 150971, Millsaps College, 1701 N State St, Jackson, MS 39210-0001. Some results on λ_{x}-invertible graphs.
The recent work of Griggs and Jin on distance-constrained graph labelings has prompted the consideration of real number labelings. For graph G and non-negative real number x, an L_{x}-labeling of G satisfies the conditions that labels of adjacent vertices differ by at least x and labels of vertices distance two apart differ by at least one; for fixed value of x, the minimum span of all L_{x}-labelings of G is denoted $\lambda_{x}(G)$. In this paper we introduce the notion of λ_{x}-invertible graphs: for $x>0$, G is said to be λ_{x}-invertible if and only if $\lambda_{x}(G)=x \lambda_{1 / x}\left(G^{c}\right)$. We investigate the properties of λ_{x}-invertible graphs and identify several classes of graphs with λ_{x}-invertibility including Kneser graphs, the line graphs of complete multipartite graphs, and a subfamily of self-complementary graphs. (Received September 01, 2008)

