1044-05-193 **John Georges, David Mauro** and **Yan Wang***, Box 150971, Millsaps College, 1701 N State St, Jackson, MS 39210-0001. Some results on λ_x -invertible graphs.

The recent work of Griggs and Jin on distance-constrained graph labelings has prompted the consideration of real number labelings. For graph G and non-negative real number x, an L_x -labeling of G satisfies the conditions that labels of adjacent vertices differ by at least x and labels of vertices distance two apart differ by at least one; for fixed value of x, the minimum span of all L_x -labelings of G is denoted $\lambda_x(G)$. In this paper we introduce the notion of λ_x -invertible graphs: for x > 0, G is said to be λ_x -invertible if and only if $\lambda_x(G) = x\lambda_{1/x}(G^c)$. We investigate the properties of λ_x -invertible graphs and identify several classes of graphs with λ_x -invertibility including Kneser graphs, the line graphs of complete multipartite graphs, and a subfamily of self-complementary graphs. (Received September 01, 2008)