1044-35-18 Jaffar Ali Shahul Hameed* (js415@ra.msstate.edu), Fort Myers, FL 33965, and Ken Brown and Ratnasingham Shivaji. Positive Solutions for $n \times n$ Elliptic Systems with Combined Nonlinear Effects.
We study the existence and multiplicity of positive solutions to $n \times n$ systems of the form

$$
\begin{array}{rlrl}
-\Delta u_{1} & =\lambda f_{1}\left(u_{2}\right) & & \text { in } \Omega \\
-\Delta u_{2} & =\lambda f_{2}\left(u_{3}\right) & & \text { in } \Omega \\
\vdots & =\quad \vdots & & \\
-\Delta u_{n-1} & =\lambda f_{n-1}\left(u_{n}\right) & & \text { in } \Omega \\
-\Delta u_{n} & =\lambda f_{n}\left(u_{1}\right) & & \text { in } \Omega \\
u_{1}=u_{2}=\ldots=u_{n}=0 & & \text { on } \partial \Omega .
\end{array}
$$

Here Δ is the Laplacian operator, λ is a non-negative parameter, Ω is a bounded domain in R^{n} with smooth boundary $\partial \Omega$ and $f_{i} \in C^{1}([0, \infty)), i \in\{1,2, \ldots, n\}$ belongs to a class of strictly increasing functions that have a combined sublinear effect at ∞. We establish results for positone systems $\left(f_{i}(0) \geq 0, i \in\{1, \ldots, l-1, l+1, \ldots, n\}\right.$ and $f_{l}(0)>0$ for some $l \in\{1, \ldots, n\}$), semipositone systems (no sign conditions on $\left.f_{i}(0)\right)$ and for systems with $f_{i}(0)=0, i \in\{1,2, \ldots, n\}$. We establish our results by the method of sub and super solutions.
(Received June 25, 2008)

