1044-54-115Wladyslaw Kulpa and Andrzej Szymanski* (andrzej.szymanski@sru.edu), Department of
Mathematics, Slippery Rock University, Slippery Rock, PA 16057. On L*-spaces.

An L^* -operator on a topological space X is a function $\Lambda : [X]^{<\omega} - \{\emptyset\} \to 2^X$ satisfying the following condition:

(*) If $A \in [X]^{<\omega} - \{\emptyset\}$ and $\{U_x : x \in A\}$ is an open cover of X, then there exists $\emptyset \neq B \subseteq A$ such that $\Lambda(B) \cap \{U_x : x \in B\} \neq \emptyset$.

The family $\operatorname{Con}(\Lambda) = \{Y \subseteq X : \Lambda(B) \subseteq Y \text{ for each } B \in [Y]^{<\omega} - \{\emptyset\}\}\$ is a convexity structure on X. It constitutes a proper generalization of well exploited *L*-structures defined by Ben-El-Mechaiekh, Chebbi, and Florenzano in 1998. We show that if X is a connected LOTS, then $\Lambda(A) = [\min A; \max A]$ defines an *L**-operator on X and that the convexity structure $\operatorname{Con}(\Lambda)$ cannot be an *L*-structure in case X is a connected Souslin line. We prove fixed point and equilibrium theorems for spaces that admit continuous *L**-operators. (Received August 26, 2008)