1044-54-169 Chris Good* (c.good@bham.ac.uk), School of Mathematics, University of Birmingham, Birmingham, England, and Brian Raines. Complexity of points of inhomogeneity in inverse limits of tent maps.

Let f_c be the core of a tent map with critical point c and let X_c be the corresponding inverse limit space. Suppose that $\overline{x} = (x_n)$ is a point of X_c that does not have a neighbourhood homoemorphic to a Cantor set cross the unit interval. Raines showed that \overline{x} is such a point if and only if x_n is in the ω -limit set, ω_c , of $f_c(c)$ for each $n \in \mathbb{N}$.

With Raines and Knight, we showed that, for tent maps, when the set, \mathcal{I} , of such inhomogeneities is countable then it has a particluar structure and that \mathcal{I} can be homoemorphic to ω_c . In this talk we discuss the possible structure of \mathcal{I} for countable ω_c and show that it can be almost anything reasonable. (Received August 31, 2008)