1044-55-218 Jan P Boronski* (boronjp@auburn.edu), Department of Mathematics and Statistics, Auburn University, Parker Hall 221, Auburn, AL 36849. On the number of fixed points of orientation reversing planar homeomorphisms.
Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an orientation reversing homeomorphism with a separating plane continuum $X$ invariant, that is $h(X)=X$. Suppose $X$ has at least $n$ bounded complementary domains. K. Kuperberg showed that $h$ must have at least $k+2$ fixed points in $X$, whenever $n \geq 2^{k}$, and asked whether $h$ must always have $n+1$ fixed points in $X$. We present an affirmative answer to this question for a class of continua containing all locally connected continua (Received September 02, 2008)

