A non-empty class \mathcal{A} of labelled graphs is weakly addable if for each graph $G \in \mathcal{A}$ and any two distinct components of G, any graph that can be obtain by adding an edge between the two components is also in \mathcal{A}. For a weakly addable graph class \mathcal{A}, we consider a random element R_{n} chosen uniformly from the set of all graph in \mathcal{A} on the vertex set $\{1, \ldots, n\}$. McDiarmid, Steger and Welsh conjecture that the probability that R_{n} is connected is at least $e^{-1 / 2}+o(1)$ as $n \rightarrow \infty$, and showed that it is at least e^{-1} for all n. We improve the result, and show that this probability is at least $e^{-0.7983}$ for sufficiently large n. We also consider 2 -addable graph classes \mathcal{B} where for each graph $G \in \mathcal{B}$ and for any two distinct components of G, the graphs that can be obtained by adding at most 2 edges between the components are in \mathcal{B}. We show that a random element of a 2 -addable graph class on n vertices is connected with probability tending to 1 as n tends to infinity. (Received February 02, 2008)

