1037-05-200

Stefanie Gerke^{*} (stefanie.gerke@rhul.ac.uk), Mathematics Department, Royal Holloway College, University of London, Egham, TW20 OEX, England, and Paul Balister and Bela Bollobas. *Connectivity of random addable graphs.*

A non-empty class \mathcal{A} of labelled graphs is weakly addable if for each graph $G \in \mathcal{A}$ and any two distinct components of G, any graph that can be obtain by adding an edge between the two components is also in \mathcal{A} . For a weakly addable graph class \mathcal{A} , we consider a random element R_n chosen uniformly from the set of all graph in \mathcal{A} on the vertex set $\{1, \ldots, n\}$. McDiarmid, Steger and Welsh conjecture that the probability that R_n is connected is at least $e^{-1/2} + o(1)$ as $n \to \infty$, and showed that it is at least e^{-1} for all n. We improve the result, and show that this probability is at least $e^{-0.7983}$ for sufficiently large n. We also consider 2-addable graph classes \mathcal{B} where for each graph $G \in \mathcal{B}$ and for any two distinct components of G, the graphs that can be obtained by adding at most 2 edges between the components are in \mathcal{B} . We show that a random element of a 2-addable graph class on n vertices is connected with probability tending to 1 as n tends to infinity. (Received February 02, 2008)