A graph G is 4-prime up to separators of size k if $\min (|X|,|V(G) \backslash X|) \leq k$ whenever the cut-rank of X in G is at most 2. A graph is internally 4-prime if it is 4-prime up to separators of size 3. We prove several chain theorems for 4-prime graphs, such as the following: for a prime and internally 4-prime graph G, there is a pivot-minor H of G such that $|V(H)|=|V(G)|-1$ and H is 4-prime up to separators of size 5 . By using these chain theorems, we show that pivot-minor-minimal graphs of rank-width at most 3 have at most 16 vertices. (Received February 03, 2008)

