1037-05-98 Gerard Cornuejols* (gc0v@andrew.cmu.edu), Carnegie Mellon University, Pittsburgh, PA 15213, Bertrand Guenin (bguenin@math.uwaterloo.ca), University of Waterloo, and Levent Tuncel (ltuncel@math. uwaterloo.ca), University of Waterloo. Lehman matrices.
A pair of square 0,1 matrices A, B such that $A B^{T}=E+k I$ (where E is the $n \times n$ matrix of all 1 s and k is a positive integer) are called Lehman matrices. These matrices figure prominently in Lehman's seminal theorem on minimally nonideal matrices. There are two choices of k for which this matrix equation is known to have infinite families of solutions. When $n=k^{2}+k+1$ and $A=B$, we get point-line incidence matrices of finite projective planes, which have been widely studied in the literature. The other case occurs when $k=1$ and n is arbitrary, but very little is known in this case. This talk discusses this class of Lehman matrices and classifies them according to their similarity to circulant matrices. (Received January 25, 2008)

