1037-17-182

Elizabeth Dan-Cohen* (edc@math.berkeley.edu), Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720-3840, and Ivan Penkov. *Parabolic subalgebras of* \mathfrak{gl}_{∞} . Preliminary report.

Parabolic subalgebras \mathfrak{p} of a finite-dimensional Lie algebra \mathfrak{g} correspond to compact homogeneous spaces G/P. They are precisely subalgebras of \mathfrak{g} containing a maximal solvable (i.e. Borel) subalgebra. A parabolic subalgebra of \mathfrak{gl}_{∞} is defined to be any subalgebra containing a maximal *locally* solvable subalgebra. Exhausting \mathfrak{gl}_{∞} by finite-dimensional \mathfrak{gl}_n and taking nested Borel subalgebras of \mathfrak{gl}_n produces examples of maximal locally solvable subalgebras. I will give a very different example which demonstrates that \mathfrak{sl}_{∞} is a parabolic subalgebra of \mathfrak{gl}_{∞} . The main theorem is that parabolic subalgebras are the stabilizers of a certain kind of generalized flag in the standard representation, with trace conditions imposed. (Received February 01, 2008)