1037-22-181

Markus Hunziker* (Markus_Hunziker@baylor.edu), Mark R. Sepanski

(Mark_Sepanski@baylor.edu) and Ronald J. Stanke (Ronald_Stanke@baylor.edu). Conformal symmetries of the wave equation and representation theory, II. Preliminary report.

In the talk by Mark Sepanski, a unitary lowest weight representation \mathcal{H}^+ and a unitary highest weight representation $\mathcal{H}^$ of a double cover of the conformal group $SO(2, n + 1)_0$ were constructed for every $n \ge 2$ such that the smooth vectors in \mathcal{H}^+ and \mathcal{H}^- consist of complex-valued solutions to the wave equation $\Box f = 0$ on Minkowski space $\mathbb{R}^{1,n} = \mathbb{R} \times \mathbb{R}^n$ and the invariant product is the usual Klein-Gordon product. In this talk we give explicit orthonormal bases for the spaces \mathcal{H}^+ and \mathcal{H}^- consisting of weight vectors; when n is odd, our bases consist of rational functions. Furthermore, we show that for every real-valued smooth solution u(t, x) to the wave equation satisfying the certain decay conditions there is a unique real-valued smooth solution v(t, x) to the wave equation such that $u + iv \in \mathcal{H}^+$ and $u - iv \in \mathcal{H}^-$. (Received February 01, 2008)