1039-16-119 Margaret Beattie* (mbeattie@mta.ca), Dept of Mathematics and Computer Science, Mount Allison University, Sackville, NB E4L 1E6, Canada, and Daniel Bulacu. Generalized quantum doubles with projection.

If U and V are bialgebras over a field k with an invertible skew pairing $\rho: U \otimes V \to k$, one can form the generalized quantum double D(U, V). For example, if H = V is a Hopf algebra and $U = (H^0)^{\text{cop}}$, then the evaluation map $ev: (H^0)^{\text{cop}} \otimes H \to k$ is a skew pairing and $D((H^0)^{\text{cop}}, H)$ is a Hopf algebra. If H is finite dimensional then D(U, V) is the usual Drinfeld double D(H). Following the approach of Doi and Takeuchi, we note necessary and sufficient conditions for the existence of a bialgebra projection π from D(U, V) to U or to V that splits the inclusion map and explicitly describe the structure of the subalgebra of π -coinvariants as a bialgebra in ${}^W_W \mathcal{YD}$, the category of left-left Yetter Drinfeld modules over $W = \text{Im}\pi$. Applying our theory to a coquasitriangular Hopf algebra (H, σ) , we see that H has an associated structure of braided Hopf algebra in ${}^{H^{\text{cop}}_{H^{\text{cop}}}}_{H^{\text{cop}}} \mathcal{YD}$ where H_{σ} is a subHopf algebra of H^0 , the finite dual of H. If H is finite dimensional, then H_{σ} is the minimal quasitriangular Hopf algebra in H^* . (Received March 09, 2008)