1039-46-102 Grzegorz C Lewicki* (Grzegorz.Lewicki@im.uj.edu.pl), Department of Mathematics, Jagiellonian University, 30-059 Krakow, Poland. On the Grünbaum "4/3" conjecture. Preliminary report.
Let V be a Banach space and let $\lambda(V)$ denote its absolute projection constant. For any $n, N \in \mathbb{N}$ denote by $S_{n, N}$ the set of all n-dimensional real Banach spaces which can be isometrically embedded in $l_{\infty}^{(N)}$. Set

$$
\lambda_{n}^{N}=\sup \left\{\lambda(V): V \in S_{n, N}\right\}
$$

and

$$
\lambda_{n}=\sup \{\lambda(V): \operatorname{dim}(V)=n\} .
$$

The famous Grünbaum conjecture [1] says that $\lambda_{2}=4 / 3$. In my talk I will give a sketch of the proof of the fact that

$$
\lambda_{3}^{5}=\frac{5+4 \sqrt{2}}{7}
$$

Also a three-dimensnional space V satisfying $\lambda(V)=\lambda_{3}^{5}$ will be determined. In particular, this shows that Proposition 3.1 from [2] is incorrect and consequently the proof of the Grünbaum conjecture presented in [2] is incomplete. Next a sketch of a proof of Grünbaum's conjecture will be given.
[1] B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451 -465.
[2] H. König, N. T. Jaegermann, Norms of minimal projections, Journal of Functional Analysis 119 (1994), 253 280. (Received March 08, 2008)

