1039-47-9 Mark Burgin* (mburgin@math.ucla.edu), University of California, Los Angeles, CA 90095. Linear Operators in Hypernormed Spaces. Preliminary report.
Let \mathbb{R}_{ω} be the set of all real hypernumbers and \mathbb{R}_{ω}^{+}be the set of all real hypernumbers that are larger than or equal to zero [Burgin, M. Theory of Hypernumbers and Extrafunctions: Functional Spaces and Differentiation, Discrete Dynamics in Nature and Society, 7(3) 2002]. A hypernorm in a linear space L over the field \mathbb{R} is a mapping $\left\|\|: L \rightarrow \mathbb{R}_{\omega}^{+}\right.$that satisfies the following axioms: N1. $\|x\|=0$ if and only if $x=0$; N2. For any number a from \mathbb{R}, we have $\|a x\|=|a\|\mid\| x \|$; N3. $\|x+y\| \leq\|x\|+\|y\|$. Let us assume that E and L are hypernormed linear spaces and $A: E \rightarrow L$ is a linear operator. Definition 1. Operator A is called bounded if there is C from \mathbb{R} such that $\|A x\| \leq C\|x\|$ for any x from E. Definition 2. Operator A is called continuous if for any sequence x_{n} with elements from E such that $\lim \left\|x_{n}\right\|=0$, we have $\lim \left\|A x_{n}\right\|=0$. Theorem 1. A linear operator A is continuous if and only if it is bounded. (Received January 15, 2008)

