1039-47-9 Mark Burgin^{*} (mburgin@math.ucla.edu), University of California, Los Angeles, CA 90095. Linear Operators in Hypernormed Spaces. Preliminary report.

Let \mathbb{R}_{ω} be the set of all real hypernumbers and \mathbb{R}_{ω}^+ be the set of all real hypernumbers that are larger than or equal to zero [Burgin, M. Theory of Hypernumbers and Extrafunctions: Functional Spaces and Differentiation, *Discrete Dynamics* in Nature and Society, 7(3) 2002]. A hypernorm in a linear space L over the field \mathbb{R} is a mapping $|| || : L \to \mathbb{R}_{\omega}^+$ that satisfies the following axioms: N1. ||x|| = 0 if and only if x = 0; N2. For any number a from \mathbb{R} , we have ||ax|| = |a|||x||; N3. $||x + y|| \leq ||x|| + ||y||$. Let us assume that E and L are hypernormed linear spaces and $A : E \to L$ is a linear operator. Definition 1. Operator A is called bounded if there is C from \mathbb{R} such that $||Ax|| \leq C||x||$ for any x from E. Definition 2. Operator A is called continuous if for any sequence x_n with elements from E such that $lim||x_n|| = 0$, we have $lim||Ax_n|| = 0$. Theorem 1. A linear operator A is continuous if and only if it is bounded. (Received January 15, 2008)