1039-57-24 Jason Bustamante and Joel Foisy* (foisyjs@potsdam.edu), Mathematics Department, SUNY Potsdam, 44 Pierrepont Ave., Potsdam, NY 13676, and Kenji Kozai, Kevin Matthews and Trickey Kristen. Intrinsically linked graphs in $\mathbb{R}P^3$. Preliminary report.

Flapan, Howards, Lawrence and Mellor showed that a graph is intrinsically linked in an arbitrary 3-manifold if and only if it is intrinsically linked in S^3 . We study intrinsically linked graphs in $\mathbb{R}P^3$, using a stronger notion of intrinsically linked. For us, a 2-component link in $\mathbb{R}P^3$ is *splittable* if one component can be placed inside an embedded 3-ball, with the other component contained in the complement of the 3-ball. A graph is *intrinsically linked in* $\mathbb{R}P^3$ if it contains, in every embedding into $\mathbb{R}P^3$, at least one pair of disjoint cycles that do not form a splittable link. With this definition, any graph that has a projective planar embedding is not intrinsically linked. We are able to fully characterize minorminimal intrinsically linked graphs in $\mathbb{R}P^3$ with connectivity 0, 1 and 2. We also show that only one Petersen-family graph is intrinsically linked in $\mathbb{R}P^3$ and prove that K_7 minus any two edges is minor-minimal intrinsically linked in $\mathbb{R}P^3$. (Received February 14, 2008)