1039-57-92 Erica Flapan, Blake Mellor* (bmellor@lmu.edu) and Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex.

We show that, given any n and α , every embedding of any sufficiently large complete graph in \mathbb{R}^3 contains an oriented link with components Q_1, \ldots, Q_n such that for every $i \neq j$, $|\text{lk}(Q_i, Q_j)| \geq \alpha$ and $|a_2(Q_i)| \geq \alpha$, where $a_2(Q_i)$ denotes the second coefficient of the Conway polynomial of Q_i . (Received March 07, 2008)