1047-05-256 József Balogh and Ryan Martin^{*} (rymartin@iastate.edu), 396 Carver Hall, Department of Mathematics, Iowa State University, Ames, IA 50010. On Avoider-Enforcer games.

Positional games are two-player games in which both players have perfect information and alternately choose elements from a set. In the Avoider-Enforcer game on the complete graph K_n , the players (Avoider and Enforcer) each take one edge in turn. Given a graph property \mathcal{P} , Enforcer wins the game if Avoider's graph has the property \mathcal{P} . An important parameter is $\tau_E(\mathcal{P})$, the smallest integer t such that Enforcer can win the game against any opponent in t rounds.

In this talk, let \mathcal{F} be an arbitrary family of graphs and \mathcal{P} be the property that a member of \mathcal{F} is a subgraph or is an induced subgraph. We determine the asymptotic value of $\tau_E(\mathcal{P})$ when \mathcal{F} contains no bipartite graph and establish that $\tau_E(\mathcal{P}) = o(n^2)$ if \mathcal{F} contains a bipartite graph.

The proof uses the game of JumbleG and Szemerédi's regularity lemma. (Received January 29, 2009)