1047-05-292 André E. Kézdy* (kezdy@louisville.edu), Department of Mathematics, University of Louisville, Louisville, KY 40292, and Hunter Snevily. On the degree of regularity of a specific linear equation. Preliminary report.
An equation is r-regular if, for every r-coloring of the positive integers, the equation has a monochromatic solution. If an equation is not r-regular for all positive integers r, then its degree of regularity is the maximum r such that it is r-regular. This talk focuses on the equation

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}=b_{n} \tag{*}
\end{equation*}
$$

where b_{n} is a positive integer (depending on n). Fox and Kleitman have shown that the degree or regularity of $(*)$ is at most $2 n-1$ and conjecture that, for every n, some choice of b_{n} achieves this bound. This talk describes partial results on this conjecture. (Received January 31, 2009)

