1047-05-314 Maria Chudnovsky and Paul Seymour* (pds@math.princeton.edu), Math Dept, Princeton University, Fine Hall, Washington Rd, Princeton, NJ 08540. Packing seagulls.
Let G be a graph with $\alpha(G)<3(\alpha(G)$ denotes the size of the largest stable set in $G)$. If G has n vertices, then its chromatic number is at least $\lceil n / 2\rceil$, and so Hadwiger's conjecture implies that there should be $\lceil n / 2\rceil$ disjoint connected subgraphs in G, pairwise joined by edges. This is far from being proved.

If G also contains a clique of cardinality at least $n / 3$, then the disjoint subgraphs exist; this is a consequence of our main result and generalizes two earlier theorems of Blasiak. Our main result answers when a graph G with $\alpha(G)<3$ contains k vertex-disjoint seagulls (a seagull is an induced three-vertex path). We give five necessary conditions, and the union of these five conditions is sufficient. We also answer the analogous question for fractional packing of seagulls, and give a polynomial-time algorithm to test whether there are k disjoint seagulls.

This all depends on the hypothesis that $\alpha(G)<3$; for general graphs a result of Dor and Tarsi implies that testing whether there are k disjoint seagulls is NP-complete. (Received February 01, 2009)

