1047-05-366 David Offner* (offner@cmu.edu), Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Turán type problems and polychromatic colorings on the hypercube.
For a fixed graph G, let $c(G)$ denote the proportion of edges which must be deleted to kill all copies of G in any n-dimensional hypercube Q_{n}. This problem has been studied extensively for choices of G including even cycles and hypercubes of fixed dimension.

Let $p(G)$ denote the largest number of colors with which the edges of any Q_{n} can be colored so that every copy of G contains every color. For many choices of G, the best bounds on $c(G)$ come from $p(G)$, since $c(G) \leq 1 / p(G)$. We discuss techniques for finding bounds on $p(G)$, what is known, and some open problems. (Received February 02, 2009)

