1047-05-401 H. A. Kierstead* (kierstead@asu.edu), Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, and A. V. Kostochka (kostochk@math.uiuc.edu), Department of Mathematics, University of Illinois, Urbana, IL 61801. Graph Packing, Game Coloring and 2-Coloring Number.
The game coloring number $\operatorname{gcol}(G)$ of a graph G is the least k such that if two players take turns choosing the vertices of a graph then either of them can insure that every vertex has less than k neighbors chosen before it, regardless of what choices the other player makes. Clearly $\operatorname{gcol}(G) \leq \Delta(G)+1$. Sauer and Spencer proved that if two graphs G_{1} and G_{2} on n vertices satisfy $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)<n$ then they pack, i.e., there is an embedding of G_{1} into the complement of G_{2}. We improve this by showing that if $\left(\operatorname{gcol}\left(G_{1}\right)-1\right) \Delta\left(G_{2}\right)+\left(\operatorname{gcol}\left(G_{2}\right)-1\right) \Delta\left(G_{1}\right)<n$ then G_{1} and G_{2} pack. To our knowledge this is the first application of such coloring games to a non-game problem. (Received February 03, 2009)

