We consider the problem of determining the maximum $\operatorname{size} \operatorname{La}(n, H)$ of a family \mathcal{F} of subsets of the set $\{1,2, \ldots, n\}$, subject to the condition that a certain subposet H is excluded. For instance, Sperner's Theorem solves the problem for H being a two-element chain P_{2}, giving $\operatorname{La}\left(n, P_{2}\right)=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$. We survey results of this kind, and focus on the newest bounds on $\mathrm{La}(n, H) /\binom{n}{\left.\frac{n}{2}\right\rfloor}$ when H is the four-element diamond poset B_{2} (joint with Linyuan Lincoln Lu). (Received February 03, 2009)

