The square G^{2} of a graph G is the graph with the same vertex set as G and with two vertices adjacent if their distance in G is at most 2 .

Thomassen showed that every planar graph G with maximum degree $\Delta(G)=3$ satisfies $\chi\left(G^{2}\right) \leq 7$. Kostochka and Woodall conjectured that for every graph, the list-chromatic number of G^{2} equals the chromatic number of G^{2}, that is $\chi_{l}\left(G^{2}\right)=\chi\left(G^{2}\right)$ for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with $\Delta(G)=3$ satisfies $\chi_{l}\left(G^{2}\right) \leq 7$. We prove that every connected graph (not necessarily planar) with $\Delta(G)=3$ other than the Petersen graph satisfies $\chi_{l}\left(G^{2}\right) \leq 8$ (and this is best possible). In addition, we show that if G is a planar graph with $\Delta(G)=3$ and girth $g(G) \geq 7$, then $\chi_{l}\left(G^{2}\right) \leq 7$.

Dvořák, Škrekovski, and Tancer showed that if G is a planar graph with $\Delta(G)=3$ and girth $g(G) \geq 10$, then $\chi_{l}\left(G^{2}\right) \leq 6$. We improve the girth bound to show that if G is a planar graph with $\Delta(G)=3$ and $g(G) \geq 9$, then $\chi_{l}\left(G^{2}\right) \leq 6$.

All of our proofs can be easily translated into linear-time coloring algorithms. (Received August 02, 2007)

