1030-05-257 Seog-Jin Kim* (skim12@konkuk.ac.kr), Department of Mathematics Education, Konkuk University, Seoul, 143-701, South Korea, and Jon-Lark Kim (jl.kim@louisville.edu), Department of Mathematics, University of Louisville, Louisville, KY 40292. Identifying Codes in q-ary hypercube. Preliminary report.
Identifying codes were introduced by Karpovsky, Chakrabarty, and Levitin (1998) in order to find fault processors in a multiprocessor system. We assume that some processors can check themselves and their neighbors at distance one, and report if there is a default. The problem is to choose as few checking processors as possible so that if we see the reports, we know which processor is malfunctioning.

Let \mathcal{C} be a subset of the vertex set of a graph G. If $N_{G}[u] \cap \mathcal{C} \neq \emptyset$ for each vertex u in G and $N_{G}[u] \cap \mathcal{C} \neq N_{G}[v] \cap \mathcal{C}$ for all distinct vertices u and v in G, then \mathcal{C} is called an identifying code for the graph G.

Let q be any integer ≥ 2. We consider the q-ary hypercube whose vertex set is \mathbb{Z}_{q}^{n} and two vertices $\left(x_{1}, \cdots, x_{n}\right)$ and $\left(y_{1}, \cdots, y_{n}\right)$ are adjacent if $x_{i}=y_{i}$ for all i except one index, say j, and $x_{j}-y_{j}= \pm 1 \quad(\bmod q)$. As a natural extension of identifying codes in binary Hamming spaces, we study identifying codes in the above q-ary Lee spaces. (Received August 05, 2007)

